

CLASS IX GUESS PAPER MATHS

SECTION - A [1 mark each]

1. The value of k, for which the polynomial $x^3 - 3x^2 + 3x + k$ has 3 as its zero, is:

(A) -3

(B) 9

(C) - 9

(D) 12

2. The factorisation of $-x^2 + 5x - 6$ yields:

(A) (x -2) (x -3)

(B) (2 + x) (3 - x)

(C) -(x-2) (3-x)

(D) -(2 - x)(3 - x)

3. The zero of the polynomial p(x) = 2x + 5 is:

(A) 2/5

(B) 5/2

(C) 0

(D) -5/2

4. Degree of which of the following polynomial is zero:

(A) x

(B) 15

(C) y

(D) $x + \frac{1}{x}$

5. In the given figure which of the following statement is true?

 $(A)\angle B=\angle C$

(B) \angle B is the greatest angle in triangle

(C) $\angle B$ is the smallest angle in triangle (D) $\angle A$ is the smallest angle in triangle

6. The semi perimeter of a triangle having the length of its sides as 20 cm, 15 cm and 9 cm is

(A) 44 cm

(B) 21 cm

(C) 22 cm

(D) none of these

7. In $\triangle ABC$, $\angle x + \angle y + \angle z$ is equals:

(A) 120°

(B) 180°

(C) 240°

(D) 360°

8. In the given figure, the value of x is:

(A) 30°

(B) 10°

(C) 20° (D) 40°

SECTION - B [2 mark each]

9. If $x = 7 + \sqrt{40}$, find the value of $\sqrt{x} + \frac{1}{\sqrt{x}}$

- **10.** In figure, ABCDE is a regular pentagon. Find the relation between 'a', 'b' and 'c'.
- **11.** In figure, ABC is an equilateral triangle. The coordinates of vertices B and C are (3, 0) and (-3, 0) respectively. Find the coordinates of its vertex A.

- 12. Evaluate: $\{\sqrt{5+2\sqrt{6}}\}+\{\sqrt{8-2\sqrt{15}}\}$
- **13.** Simplify the following $\frac{7+3\sqrt{5}}{3+\sqrt{5}} \frac{7-3\sqrt{5}}{3-\sqrt{5}}$
- **14.** In figure, $\ell \mid |m| \mid n$ and $a \perp \ell$. If $\angle BEF = 55^{\circ}$, Find the values of x, y and z.

SECTION - C [3 marks each]

15. If
$$a = 9 - 4\sqrt{5}$$
, find the value of $a^2 + \frac{1}{a^2}$

- **16.** If $\frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} \sqrt{3}} = a + \sqrt{15} b$, find the value of a and b
- **17.** Factorise the following: $12(x^2 + 7x)^2 8(x^2 + 7x)(2x 1) 15(2x 1)^2$
- **18.** In figure, $\ell \mid |m| \mid n$, $\angle CFE=y$, from the figure find the value of (y + x) : (y x)
- **19.** In figure, DE | | BC and MF | | AB. Find (i) \angle ADE + \angle MEN (ii) \angle BDE (iii) \angle BLE

20. In the given figure, $\angle R > \angle Q$ and S is a point on RQ such that PS is the bisector of $\angle QPR$ and $PT \perp RQ$. Show that $\angle TPS = \frac{1}{2} (\angle R - \angle Q)$.

22. If
$$x = \frac{\sqrt{p+2q} + \sqrt{p-2q}}{\sqrt{p+2q} - \sqrt{p-2q}}$$
, then show that $qx^2 - px + q = 0$

- **23.** Prove that $(x+y)^3+(y+z)^3+(z+x)^3-3(x+y)(y+z)(z+x)=2(x^3+y^3+z^3-3xyz)$
- **24.** From figure, find the coordinates of the points A, B, C, D, E and F Which of the points are mirror images in (i) x-axis (ii) y-axis?

SECTION - D [4 marks each]

25. Simplify:
$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots + \frac{1}{\sqrt{8}+\sqrt{9}}$$

26. If
$$x = \frac{\sqrt{2}+1}{\sqrt{2}-1}$$
 and $y = \frac{\sqrt{2}-1}{\sqrt{2}+1}$, find the value of $x^2 + y^2 + xy$

- **27.** If $x^3 + mx^2 x + 6$ has (x 2) as a factor, and leaves a remainder n when divided by (x 3), find the values of m and n.
 - (ii) Without actual division, prove that the polynomial $2x^4 5x^3 + 2x^2 x + 2$ is exactly divisible by $x^2 3x + 2$.
- **28.** In figure, ABCD is a square and EF is parallel to diagonal BD and EM = FM. Prove that (i) DF = BE (ii) AM bisects ∠BAD

29. (i) In the given figure, if PQ \perp PS, PQ | | SR, \angle SQR = 28° and \angle QRT = 65°, then find the values of x and y.

- (ii) In the given figure, prove that $\ell \mid \mid m$.
- **30.** Factorise $3x^3 x^2 3x + 1$. (ii) State Euclid's fifth postulate.
- **31.** Find the values of a and b so that the polynomial $x^3 ax^2 13x + b$ has x 1 and x + 3 as factors.
- **32.** In a \triangle ABC, the sides AB and AC are produced to D and E respectively. The bisectors of \angle DBC and ECB intersect at a point O. Prove that, \angle BOC = 90°- $\frac{1}{2}$ \angle A.
- **33.** (i) In Fig., AE bisects \angle CAD and \angle B = \angle C. Prove that AE | | BC.

- (ii) In figure, PR > PQ and PS bisects \angle QPR. Prove that \angle PSR > \angle PSQ.
- **34.** The base of an isosceles triangle measures 24 cm and its area is 60 cm². Find the perimeter. (ii) Show that 2 and $-\frac{1}{3}$ are the zeroes of the polynomial $3x^3 2x^2 7x 2$. Also, find the third zero of the polynomial.

MATHEMAGICS VANDANA BANSAL M: 9855188797

VANDANA BANSAL # 3149, (T.F.), SECTOR 23-D, CHANDIGARH
