chsespess	

CLASS IX GUESS PAPER MATHS

SECTION - A [1 mark each]

1. The value of k, for which the polynomial $x^{3}-3 x^{2}+3 x+k$ has 3 as its zero, is:
(A) -3
(B) 9
(C) -9
(D) 12
2. The factorisation of $-x^{2}+5 x-6$ yields:
(A) $(x-2)(x-3)$
(B) $(2+x)(3-x)$
(C) $-(x-2)(3-x)$
(D) $-(2-x)(3-x)$
3. The zero of the polynomial $p(x)=2 x+5$ is:
(A) $2 / 5$
(B) $5 / 2$
(C) 0
(D) $-5 / 2$
4. Degree of which of the following polynomial is zero:
(A) x
(B) 15
(C) y
(D) $x+\frac{1}{x}$
5. In the given figure which of the following statement is true ?
(A) $\angle \mathrm{B}=\angle \mathrm{C}$
(B) $\angle \mathrm{B}$ is the greatest angle in triangle
(C) $\angle \mathrm{B}$ is the smallest angle in triangle
(D) $\angle \mathrm{A}$ is the smallest angle in triangle

6. The semi perimeter of a triangle having the length of its sides as $20 \mathrm{~cm}, 15 \mathrm{~cm}$ and 9 cm is
(A) 44 cm
(B) 21 cm
(C) 22 cm
(D) none of these
7. In $\triangle \mathrm{ABC}, \angle \mathrm{x}+\angle \mathrm{y}+\angle \mathrm{z}$ is equals:
(A) 120°
(B) 180°
(C) 240°
(D) 360°
8. In the given figure, the value of x is:
(A) 30°
(B) 10°
(C) 20°
(D) 40°

SECTION - B [2 mark each]

9. If $x=7+\sqrt{40}$, find the value of $\sqrt{x}+\frac{1}{\sqrt{x}}$
10. In figure, ABCDE is a regular pentagon. Find the relation between ' a ', ' b ' and ' c '.

11. In figure, $A B C$ is an equilateral triangle. The coordinates of vertices B and C are $(3,0)$ and $(-3,0)$ respectively. Find the coordinates of its vertex A.

CBSEGuess.com

12. Evaluate : $\{\sqrt{5+2 \sqrt{6}}\}+\{\sqrt{8-2 \sqrt{15}}\}$
13. Simplify the following $\frac{7+3 \sqrt{5}}{3+\sqrt{5}}-\frac{7-3 \sqrt{5}}{3-\sqrt{5}}$
14. In figure, $\ell||\mathrm{m}|| \mathrm{n}$ and $\mathrm{a} \perp \ell$. If $\angle \mathrm{BEF}=55^{\circ}$, Find the values of x, y and z .

SECTION - C [3 marks each]

15. If $a=9-4 \sqrt{5}$, find the value of $a^{2}+\frac{1}{a^{2}}$
16. If $\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}=a+\sqrt{15} b$, find the value of a and b

17. Factorise the following: $12\left(x^{2}+7 x\right)^{2}-8\left(x^{2}+7 x\right)(2 x-1)-15(2 x-1)^{2}$
18. In figure, $\ell||m|| n, \angle C F E=y$, from the figure find the value of $(y+x):(y-x)$
19. In figure, $\mathrm{DE}|\mid \mathrm{BC}$ and MF$| \mid$

AB . Find (i) $\angle \mathrm{ADE}+\angle \mathrm{MEN}$ (ii) $\angle \mathrm{BDE}$ (iii) $\angle \mathrm{BLE}$

20. In the given figure, $\angle \mathrm{R}>\angle \mathrm{Q}$ and S is a point on RQ such that PS is the bisector of $\angle \mathrm{QPR}$ and $\mathrm{PT} \perp \mathrm{RQ}$. Show that $\angle \mathrm{TPS}=\frac{1}{2}(\angle \mathrm{R}-\angle \mathrm{Q})$.
21. If $x=\frac{1}{2-\sqrt{3}}$, find the value of $x^{3}-2 x^{2}-7 x+5$

22. if $x=\frac{\sqrt{p+2 q}+\sqrt{p-2 q}}{\sqrt{p+2 q}-\sqrt{p-2 q}}$, then show that $q x^{2}-p x+q=0$
23. Prove that $(x+y)^{3}+(y+z)^{3}+(z+x)^{3}-3(x+y)(y+z)(z+x)=2\left(x^{3}+y^{3}+z^{3}-3 x y z\right)$
24. From figure,find the coordinates of the points A, B, C, D, E and F Which of the points are mirror images in (i) x-axis (ii) y-axis ?

SECTION - D [4 marks each]

25. Simplify : $\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\ldots+\frac{1}{\sqrt{8}+\sqrt{9}}$

26. If $x=\frac{\sqrt{2}+1}{\sqrt{2}-1}$ and $y=\frac{\sqrt{2}-1}{\sqrt{2}+1}$, find the value of $x^{2}+y^{2}+x y$
27. If $x^{3}+m x^{2}-x+6$ has $(x-2)$ as a factor, and leaves a remainder n when divided by ($x-3$), find the values of m and n.
(ii) Without actual division, prove that the polynomial $2 x^{4}-5 x^{3}+2 x^{2}-x+2$ is exactly divisible by $x^{2}-3 x+2$.
28. In figure, $A B C D$ is a square and $E F$ is parallel to diagonal $B D$ and $E M=F M$. Prove that (i) $\mathrm{DF}=\mathrm{BE}$ (ii) AM bisects $\angle \mathrm{BAD}$

cbse Sguess	CBSEGuess.com

29. (i) In the given figure, if $\mathrm{PQ} \perp \mathrm{PS}, \mathrm{PQ}| | \mathrm{SR}, \angle \mathrm{SQR}=28^{\circ}$ and $\angle \mathrm{QRT}=65^{\circ}$, then find the values of x and y.
(ii) In the given figure, prove that $\ell \| \mathrm{m}$.
30. Factorise $3 x^{3}-x^{2}-3 x+1$. (ii) State Euclid's fifth postulate.

31. Find the values of a and b so that the polynomial $x^{3}-a x^{2}-13 x+b$ has $x-1$ and $x+3$ as factors.
32. In a $\triangle A B C$, the sides $A B$ and $A C$ are produced to D and E respectively. The bisectors of $\angle D B C$ and $E C B$ intersect at a point O . Prove that, $\angle \mathrm{BOC}=90^{\circ}-\frac{1}{2} \angle \mathrm{~A}$.
33. (i) In Fig., $A E$ bisects $\angle C A D$ and $\angle B=\angle C$. Prove that $A E \| B C$.
(ii) In figure, $\mathrm{PR}>\mathrm{PQ}$ and PS bisects $\angle \mathrm{QPR}$. Prove that $\angle \mathrm{PSR}>\angle \mathrm{PSQ}$.

34. The base of an isosceles triangle measures 24 cm and its area is $60 \mathrm{~cm}^{2}$. Find the perimeter.
(ii) Show that 2 and $-\frac{1}{3}$ are the zeroes of the polynomial $3 x^{3}-2 x^{2}-7 x-2$. Also, find the third zero of the polynomial.

MATHEMAGICS $\overline{\text { VANDANA BANSAL } M \text { : } 9855188797}$

VANDANA BANSAL \# 3149, (T.F.), SECTOR 23-D, CHANDIGARH

